
A Stochastic Hyper-Heuristic for Optimising through Comparisons

Kieran Greer, Senior Member, IEEE.
Distributed Computing Systems, Belfast, UK.

Email: kgreer@distributedcomputingsystems.co.uk

Abstract: This paper introduces a new hyper-heuristic framework
for automatically searching and changing potential solutions to a
particular problem. The solutions and the problem datasets are
placed into a grid and then a game is played to try and optimise
the total cost over the whole grid, using a randomising process.
The randomisation could be compared to a simulated annealing
approach, where the aim is to improve the solution space as a
whole, possibly at the expense of certain better solutions. It is
hoped that this will give the solution search an appropriate level
of robustness to allow it to avoid local optima.

Keywords: hyper-heuristic, stochastic, corroborative evidence,
genetic algorithms, simulated annealing.

I. INTRODUCTION

This paper introduces a new algorithm for automatically
searching and changing potential solutions to a particular
problem using a hyper-heuristic. The solutions and the
problem datasets are placed into a grid and then a game is
played to try and optimise the total cost over the whole grid,
using a randomising process. It would also work well for
problems that might require some sort of symbolic evaluation
instead of a numerical one. In that case, an exact evaluation of
what value is ‘better’ might not be possible and so some sort
of matching evaluation would be required instead. This paper
only proposes the new algorithm and tries to justify it through
a logical reasoning argument. Only a small amount of testing
has been performed so far to prove its effectiveness, but the
argument should make it clear what the algorithm is about and
why it should work. This algorithm automates a lot of the
selection process for selecting solutions to mutate, or keep, for
evolving further. It also tries to produce a solution that is
robust across the whole solution set and therefore should be
able to generalise better than a more direct approach that
might lead quickly to a local optimum.

The rest of the paper is organised as follows: section II
introduces hyper-heuristics and section III describes some
related technologies. Section IV describes the new heuristic,
while section V gives an explanation of why it should work.
Finally, section VI gives some conclusions on the work.

II. HYPER-HEURISTICS

Wikipedia describes a hyper-heuristic as:

‘A hyper-heuristic is a heuristic search method that seeks
to automate, often by the incorporation of machine

learning techniques, the process of selecting, combining,
generating or adapting several simpler heuristics (or
components of such heuristics) to efficiently solve
computational search problems. One of the motivations
for studying hyper-heuristics is to build systems which
can handle classes of problems rather than solving just
one problem.’

...

‘In a typical hyper-heuristic framework there is a high-
level methodology and a set of low-level heuristics (either
constructive or perturbative heuristics). Given a problem
instance, the high-level method selects which low-level
heuristic should be applied at any given time, depending
upon the current problem state, or search stage.’

This problem solving method should probably be called a
hyper-heuristic rather than a metaheuristic, because it controls
the search performed by other heuristics rather than evaluate
any problem directly itself. Two introductory chapters on
hyper-heuristics can be found in [1] and [2]. The most likely
application for this heuristic would be to select the best or
most likely solutions to a problem through corroborative
evidence. As described in [1], a typical hyper-heuristic
algorithm might be:

1. Start with a set H of heuristic ingredients, each of which
are applicable to a problem state and transform it to a new
problem state. Examples of such ingredients in bin-
packing are a single top-level iteration of ‘Exact Fit’ or a
single top-level iteration of ‘largest first, first fit’;

2. Let the initial problem state be S0.
3. If the problem state is Si then find the ingredient that is in

some sense most suitable for transforming that state.
Apply it, to get a new state of the problem Si+1.

4. If the problem is solved, stop. Otherwise go to 3.

They note that:

‘the important point is that the hyper-heuristic has no
knowledge as to the function of each heuristic.’
...
‘Using its internal state, the hyper-heuristic has to
decide which low level heuristic(s) it should call next.’

The new hyper-heuristic algorithm tries to automate the
selection process and also robustly improve the solution pool



that potential solutions can be selected from. This process uses
a random or stochastic element which means that the best
solutions will not always automatically be chosen. Instead, it
tries to optimise over the whole solution and problem set,
where if a number of solutions would benefit from the best
solution being removed, then this is done. The algorithm relies
not on selecting the best value, but on matching values over
different solutions. This would be particularly useful if there is
not a numerical evaluation, but a symbolic one being
performed, for example. Then the notion of a ‘better’
evaluation is more difficult and possibly matching is the best
method to try. This heuristic could also be useful for problems
that try to reason over incomplete or uncertain information.
The problem set can present the information in parts and it is
up to the problem solver to recognise the whole from the bits
that it receives. This could include fuzzy or noisy data that
would confuse the evaluation, or partial information might
lead to different plausible scenarios. The system then needs to
judge which is the correct or most likely case. You could
imagine a real world scenario where there are many different
factors bringing in information, but a complete picture is not
possible. Therefore, the system is required to reason with
uncertainty, or only partial information. In that case, higher
and incorrect evaluations could also result from information
that is missing. Therefore, it might be preferable to select a
solution based on the number of potential solutions that
produce the same result. In percentage terms, if 10 solutions
say that the value is 1 and only 5 say that it is 2, then it is more
likely to be 1. This matching process is therefore key to the
success of the hyper-heuristic.

III. RELATED WORK

There is quite a lot of related work in the area of hyper-
heuristics and problem solving and so only a few points will
be made. Most important for this heuristic are probably
genetic algorithms and simulated annealing, but problem
solving is relevant to almost all areas of AI.

A. Simulated Annealing

The selection process contains a randomising element that
could be compared to a simulated annealing approach.
Simulated annealing provides a probability function, where a
worse move may be made at certain iterations with a pre-
determined probability. This also means that if the solution is
trapped in a local optimum there is an opportunity of moving
out of it again. Simulated annealing has a ‘cooling factor’
which is used to determine how often the probability function
will allow a worse move. Initially the cooling factor is set
quite high and worse moves are permitted more often. As the
number of iterations completed increases, the cooling factor is
decreased, making it less likely that a move to a worse
solution will be allowed. This has the effect of allowing the
search strategy to roam widely at the start and then settle on a
particular area of the search space as the number of iterations
increases. The new process could work in a similar manner,
where a hill climbing approach of heading directly for the best

solution will probably not be done. Any genetic mutations, or
weight updates for machine learning algorithms, will be
selected from a wider gene pool initially because of the
randomness, making the solution more robust. Over time
however, the process may eventually settle on a pool of more
similar solutions that will naturally change their values much
less.

B. Genetic Programming

Genetic algorithms work by creating a pool of potential
solutions that try to solve a problem. The better solutions then
mutate with each other to produce offspring that should in
theory lead to an even better solution. They therefore search
the solution space by mutating the better current solutions
using certain selection criteria to do this. A recent paper [4]
actually suggests a process that is in some ways similar to this
one. They note that it might be better to select solutions based
on their similarity to each other. They appear to state that it is
more suitable for similar solutions to mutate and produce new
solutions than for very different ones to do so. This is possibly
a more consistent way of creating mutations. They note that a
current trend is to have parallel or multiple groups of solution
sets that start from different places to try and solve the
problem. This would increase the robustness of the whole
process. Potential solutions then need to be able to cross-over
to a different solution pool to mutate, if they are found to
produce fitness functions that are similar to the other solution
set. They note that previous algorithms have suffered from
problems such as the need to specify certain criteria for
selecting which solutions to move to a different pool and their
algorithm is able to automate this. Genetic algorithms would
therefore really benefit from a good hyper-heuristic
framework that could control how they crossed-over and
mutated with each other. In [2] they point out the link
between genetic programming and hyper-heuristics. They note
that a number of authors have pointed out the suitability of
genetic programming over other machine learning methods to
automatically produce heuristics, but also note the
disadvantages just written about. In particular, the often
unintuitive values for parameters, which are typically found
through a trial and error process.

IV. THE NEW HYPER-HEURISTIC

This section describes the algorithm in more detail and then
traces through one test illustrative example to show how it
would work in practice. The new heuristic works as follows: A
number of solutions are initially generated and there are also a
set of problems that need to be solved. The problems are
evaluated and the results are placed into a grid-like structure,
where for example, the solutions make up the rows and the
problems make up the columns. The values for the related
solutions and problems should be added in a random manner
so that no particular solution or problem is preferred. It is
assumed that it is not known what a better value would be.



A game is then played that tries to optimise a total value over
the whole grid. This is done my matching values across rows
or columns. A match across rows would mean that two
different solutions are evaluating a problem part in the same
way. A match across columns would mean that two problem
parts are related or apply to the same larger problem. For this
first algorithm version, to match any two entities, the
algorithm must remove any rows or columns that are in-
between the two to be matched. This is simply the chosen
process for discarding certain solutions and also the criteria for
allowing a match. If the process is initially random, then this is
fair to all potential solutions. The removed entries are not then
part of any final solution. The algorithm must then try to
calculate what entries to remove and what ones to keep, to
produce the largest total over the whole grid, or the best match
over the whole solution space. The solutions that are kept can
then be used in the next iteration to generate new solutions
through mutations, etc., that should slowly improve the
solution pool overall. Any problems that are kept can be
included in any new problem set and could be recognised as
being important by the fact that any future solutions should be
able to evaluate them properly as well. In pseudo-code format,
this algorithm could look as follows:

1. Evaluate the problem set using the current solution set.
2. Place the solutions and problems into a grid in a

random order.
3. Run the algorithm to determine the best matches.
4. If the new solution set is worse, then the resulting

values do not need to be kept, but repeat again with a
different set of new solutions/problems.

5. If the change between the current evaluation/solution
set and the new evaluation/solution set closes to be
very small or no change, then possibly an optimal
solution set has been achieved. GoTo 10.

6. Keep the best solutions and mutate them to get the next
solution set. Fill up the remaining solution numbers
with new random ones.

7. Keep the better problems as part of the next dataset and
fill up the remaining numbers possibly with new ones.

8. If the original positions for the kept solutions or
problems is maintained, then their related optimal
evaluation should always be possible and so a new
solution set will have to improve on it.

9. GoTo 1.
10. Select the best solution from the current set.

A. Test Example

The following figures show how the algorithm might work in
practice. Figure 1shows an example grid constructed from 4
initial possible solutions and 4 initial problems. The first
matching operation removes solution 2 from the pool, so that
solutions 1 and 3 can match over problems 2 and 4. So while
solutions 2 and 4 have the best single matching value of 10,
this is not included, because the two matches of 8 and 5 for
solutions 1 and 3 produces a larger total overall. Solution 3
can then be removed to allow for matches between solutions 1

and 4. This leads to a new solution pool with the previous
solutions 1, 3 and 4 included in it. The problem set to be
solved could possibly include the problems 1, 2 and 4.

Initial Random State

P1 P2 P3 P4

S1 3 5 7 8

S2 1 3 7 10

S3 6 5 9 8

S4 3 5 4 10

Solution Set: < empty >; Problem Set: < empty >

First Matching Operation

P1 P2 P3 P4

S1 3 5 7 8

S3 6 5 9 8

S4 3 5 4 10

Solution Set: S1, S3; Problem Set: P2, P4.

Second Matching Operation

P1 P2 P3 P4

S1 3 5 7 8

S4 3 5 4 10

Solution Set: S1, S3, S4; Problem Set: P1, P2, P4.

Figure 1. Example of the matching process to generate an overall
optimal solution total of 21 points.

The next iteration would then mutate these kept solutions and
also possibly also add random new ones to fill up the pool to
the required number. New problems can also be added, but if
the ones that were matched are still important, then they have
been recognised and can be part of any subsequent
optimisation process as well. The next iteration then randomly
adds the solution and problem sets to the same grid-like
structure and tries to optimise again.

This first iteration has returned an optimising total value of 21.
It will eventually become the case that the optimising values



or kept solution sets do not change by very much. This is then
similar to the simulated annealing cooling factor, because any
subsequent changes will become less and less. When this
happens, the final solution set can be used as the optimal set
with which to select a final answer from.

V. WHY THE HEURISTIC SHOULD WORK

The new heuristic uses the following principles to justify its
process:

 The process is constructive – actually guiding the search
for a solution and marking good solutions or important
problem sets along the way.

 To generate an optimal solution, you need to remove
worse solutions or problems as well as keep the better
ones, to eventually terminate the process. There therefore
needs to be a consistent way of selecting what solutions to
keep/remove, to guide the process.

 The problem solving process should be as robust as
possible; therefore there should be as little bias in it as
possible. The algorithm will select new solutions from the
widest possible range of values, but that range must also
be accurate.

 The process works based on percentages – if more
solutions suggest that one value is correct, then that
should be the selected value.

 The process works on the assumption that better values
can be as incorrect as worse values, which is valid when
an exact evaluation is not possible.

 The process works best with matching problems but
numerical data would also be suitable. The numerical data
could also conceivably represent more than one problem,
when the different problems (parts) would then be
matched separately.

 One argument is that you should always keep the best
solution(s) and the algorithm will try to do that unless the
solution pool as a whole would benefit more from any of
them being removed. Matching the better solutions,
whenever possible, will also give a larger overall total.

Often, a genetic programming system will not produce good
solutions on a first run as poor parameters are chosen. This is
especially the case with the novice practitioner. It is therefore
essential that different parameter settings are thoroughly
investigated. The mutation process will then refine the
parameter values and the results of the grid optimisation
would be able to suggest what initial solutions should provide
crossovers with each other to make the mutations. As it is only
a framework, it can also match across different types of
heuristic (genetic and nearest neighbour, or neural, etc).

VI. CONCLUSIONS

This new algorithm takes the view that the solutions do not
know for certain what good or poor evaluations are. A higher
value could be as poor an evaluation as a lower one. This

might be because of uncertainty or incomplete information. Or
if there is no specific numerical evaluation, then possibly
matching is the only feasible option. There is also a possibility
for combining problem parts (features) over a single solution
that are shown to have similarities. Because of this, the
solutions need to make use of corroborating evidence to come
to some sort of conclusion. Also, as the heuristic does not
know what solutions are best, it needs to be fair over all of
them and for the same reason, would like some level of
robustness that is obtained through the randomising process.
The solution pool as a whole will improve, possibly at the
expense of one or two better solutions.

This is only an initial attempt to use this sort of algorithm to
solve a problem. Optimality might work best if the same
position is retained for the solutions and problems that are
kept, or possibly all matched solutions should be kept and not
just the ones from the most recent iteration. So this sort of
thing would need to be considered as well, but as this is a new
framework there are lots of different possibilities as to how the
evaluation process might be carried out.

If the positions in the grid for the solutions and problems that
are kept is maintained, then it is clear that the next iteration
will only change the kept solution set if it produces an optimal
value that is better than the current one. The grid can always
be solved in the same way again if there is no better solution.
If the mutated solutions are then placed in the slots around the
parent solutions that they were created from, then there is also
a sense of the natural grouping that was written about in [4]. It
will also then be more likely that one kept solution will be
replaced by one derived from it, although crossover to a
different group (different area in the grid) would also be
possible. Future work will test this algorithm and try to
determine what levels of accuracy it can achieve.

VII. REFERENCES

[1] Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and
Schulenburg, S., Hyper-Heuristics: an Emerging
Direction in Modern Search Technology. In Handbook of
metaheuristics, chapter 16, pp. 457–474. Kluwer
Academic Publishers, 2003.

[2] Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan,
E., and Woodward, J.R., Exploring Hyper-heuristic
Methodologies with Genetic Programming. In C.
Mumford and L. Jain, editors, Collaborative
Computational Intelligence. Springer, 2009.

[3] Cowling, P., Kendall, G., and Soubeiga, E., A parameter-
free hyperheuristic for scheduling a sales summit. In:
Proceedings of 4th Metahuristics International
Conference (MIC 2001), Porto Portugal, 16–20 July,
2001, pp. 127–131.

[4] Sathya, S. and Kuppuswami, S., Analysing the migration
effects in nomadic genetic algorithm, Int. J. Adaptive and
Innovative Systems, Vol. 1, No. 2, 2010.


