
First released in 2008.

Stigmergic Linking for Optimising

and Reasoning Over Information

Networks

Kieran Greer1, Matthias Baumgarten1, Maurice Mulvenna1, Kevin Curran2

and Chris Nugent1

Faculty of Computing and Engineering, University of Ulster, Northern
Ireland, UK
1 School of Computing and Mathematics and Computer Science Research
Institute
2 School of Computing and Intelligent Systems and Computer Science
Research Institute

Abstract - This main contribution of this report will be to describe and evaluate a set of

tests, used to measure the effectiveness of stigmergic linking with regard to query

optimisation. It will be shown that the results of queries can be autonomously fed back

through a network to allow it to self-optimise. The type of network that is being

considered is a network of information sources, such as a ‘knowledge network’. This is a

construct that will self-organise distributed knowledge in a way that allows it to be

efficiently retrieved and used. Key elements thereof are its lightweight, reference-based

structure and its autonomous nature. The network may have permanent organisational

structures based on semantics. However, the stigmergic links will add an extra dimension

to the self-organisation and allow it to optimise the query process effectively. These links

will in effect create temporary views that reflect the use of the system and complement

any permanent organisation created through semantics. Some tests on reasoning over the

stored information will also be provided and shows that higher levels of reasoning can

also be obtained.

General Terms: Autonomous, Stigmergic Link, Query, Evaluation, Knowledge Network



2

1 Introduction

The aim of this work is to evaluate a mechanism to allow an information

network to optimise itself dynamically. One objective of the work is that

the network structure should remain lightweight and so the organising

mechanism should also be lightweight. To this end stigmergic links are

used. Stigmergy is an experience-based mechanism of learning from its

environment. The context of the work is to use stigmergic links to

optimise the network with regard to querying. In other words, the network

will learn what nodes to link together in order to optimise the querying

process. These source clusters will represent the knowledge of the users of

the system and will optimise knowledge retrieval by indicating specific

sources to retrieve. Thus knowledge will be entered into the system

without the need for an internal knowledge-based algorithm. This is

appealing because the use of the network may not be known beforehand,

or may change through time and so some form of dynamic knowledge

construction will be able to adapt to a changing situation. The types of

network to be considered are distributed information-based networks, such

as the Internet or a Mobile or Ad-hoc NETwork (MANET). A user would

typically be required to query the sources to retrieve information from

such a network. One example of this that has been studied in a recent

project 1 is called a ‘Knowledge Network’. A knowledge network is a

generic structure that organises distributed knowledge of any format into a

system that will allow it to be efficiently retrieved. Papers describing the

initial knowledge network concepts include Mulvenna et al. [2006] or

Baumgarten et al. [2006]. The rationale of the knowledge network is to act

as a middle layer that connects to a multitude of sources, organises them

1
For more information on the overall project see http://www.cascadas-project.org.



3

based on various concepts and finally provides well-structured, pre-

organised knowledge to individual services and applications. The main

features of this structure are its generic, lightweight and service-based

architecture. The service-based architecture allows for services to be

added that can perform any kind of functionality over the network

knowledge. This is very flexible and will allow many different kinds of

network to be constructed from certain base components. The knowledge

network will organise itself in an autonomous manner through the results

of query requests, to create temporary views that reflect the use of the

system. Figure 1 is an example of a knowledge network related to the

concept of Sport.

This network is clearly hierarchical in structure, where it is organised

based on the semantics of the contents. Thus a Football node is a sub-node

of a Sport node and Premier and Sunday-league are sub-nodes of the

Football node. These semantics provide a relatively lightweight and

distributed ontology in which to describe the network contents. The

hexagonal structures at the bottom represent actual information sources

that bring information of any kind into the network.

Figure 1: Sport Knowledge Network

Sport

Cricket Football Rugby

Premier Sunday-league International Club

Knowledge Container



4

The challenges faced for querying the knowledge in this type of network

are as follows:

 For the emerging pervasive/sensor-based environment, a

lightweight framework is being considered. Ontologies, typically

used to represent knowledge, thus need to be created in a relatively

lightweight way.

 The querying needs to be distributed, retrieving information from

several sources. This requires the query to be constructed

dynamically from partial results as it is executed.

 The organisation must be autonomous and should not assume any

prior knowledge of the environment. The system is to be generic,

stigmergic and self-organising.

 The potential size of the network could be huge, so some query

optimisation, directing the search to the most relevant sources,

would make a querying process more practical.

While the hierarchical structure is useful for permanent organisation of the

knowledge based on semantics, it does not provide complete organisation.

One problem is the potential number of similar sources. For example,

Figure 1 shows two sources related to the Cricket node. Each source, for

example, might represent a different team. If a user asks about Cricket,

then the network might need to look at all teams. However, if through

links certain sources can be indicated, then the query process can be

significantly reduced. The other problem with this ontology construction is

that it is still knowledge-based. Stigmergic links will also be able to link

sources that are not obviously related through semantics or other

comparisons and so can dynamically link what would otherwise be



5

completely unrelated concepts. For example, maybe a Football and Rugby

Club use the same stadium. This adds an extra dimension to the

optimisation process and so long as the links are sensible, they can be

reliably used. One potential application area might be the health service,

as has already been suggested by Cameron et al. [2004]. This environment

might have a large number of databases with records of patients etc. that

could be electronically retrieved and linked through queries. Another area

is the Semantic Web [Berners-Lee et al., 2001]. Instead of a user asking to

retrieve a single web page, he may ask for information that relates to

several web pages. These pages would need to be retrieved and associated

together. Thus a way of selecting the best pages to use and link would be

useful.

The rest of the report is organised as follows: Section 2 describes the

linking structure used to self-optimise with respect to querying and

introduce the idea of low level reasoning. Section 3 describes related

work. Section 4 describes the test environment and methodology. Section

5 describes the results and conclusions of the tests. Section 6 discusses the

report’s findings and describes any general conclusions on the work.

2 Stigmergic Linking

Stigmergy is a term that is used to describe the actions of simple entities

that, by reacting to their environment, can collectively achieve more

intelligent behaviours. The term stigmergy was first used by the biologist

Grassé [Grassé 1959] to describe the behaviour of termites as they

coordinate their nest-building activities. An example of stigmergy in

Artificial Intelligence is the Ant Colony Optimisation algorithm [for

example, Dorigo et al. 2000]. ACO works by copying the actions of ants



6

as they try to find the optimal route from one position to another. They

randomly select a number of routes and leave a pheromone behind

indicating the route that they took. The shortest route will build up the

strongest pheromone amounts and so the other ants will be stimulated to

take this route. The ants do not know what the optimal route is, but rather

discover it through the experience of all the routes that all ants take. Their

reasoning does not require any intelligent knowledge, but only to be able

to read the pheromone trail.

A standard ‘Select-From-Where’ statement can be used to retrieve

information. This allows a user to select certain values from certain source

types where certain conditions are true. The querying process being

adopted here is a two stage process. The first stage searches for potential

sources that can answer the query and the second stage then queries the

sources to retrieve their values. The first stage can also be used as a search

engine, where source references can be stored. Thus if the sources are

dynamic (sensors for example) it is better to store the reference and then

retrieve dynamically the information when needed. For example if a user

asks for sources about International Rugby teams, then the first stage can

provide a search of the network and retrieve the path references. A user

however can also ask for specific values, for example:

Select Premier.team From Premier, Sunday-league Where Premier.goals

GT Sunday-League.goals

The network needs to be fed information that it can use to manage the

links and it is proposed that this can be done by using the results of the

querying process. The nodes that were used to answer each query can be

informed and can update their related link values. Each source can store a



7

structure that records the sources related to it through the querying

process. This structure can monitor related sources at different levels by

assigning weights to them and allows it to recognise when a new source

reference should be included or an old source reference removed. In the

context of source linking, a weight is simply a numerical amount

associated with a source. It can be incremented or decremented and

compared to threshold values. If the weight value becomes greater than a

threshold value, then the source reference can move up a level in a linking

structure. If a source is found to be used in the same query that the current

source was used in, then its reference can be added to a link table in the

current source. In one set of tests there was also another entry stored for

each link path. This was just a single entry that could store a new source

before it was moved into the link table itself. This single additional entry

was found to have a significant improvement with regard to quality of

answer, but as it was stored for each new linking branch, it was difficult to

control the amount of memory used when it was included. Thus it has

since been made an optional feature and all new entries can be stored

directly in the link structure instead if that is possible. Thus each node can

know and manage the exact number of entries that it stores. Only the

sources referenced in the top level structure are considered to be reliable

links that should be returned as sources to look at. So there needs to be

some degree of consistent association before a source is returned as a link.

2.1 Linking Methodology

The tests have used a linking structure with three levels. These levels are

separate structures that represent possible sources, monitored sources and

linked sources. The possible sources structure records new sources that



8

may possibly become links. They need to be associated several more times

before they can be called links. The monitor structure is an intermediary

structure that stores more advanced possibilities. Having two levels here

(possible and monitor) may not be necessary, but it can be helpful for

resource management or may allow for initial communication when a

source is shown to be related. For example, specific sources can reinforce

links when they reach the middle level, even if the whole query is not

answered. The linked level is the top level that then stores the references

to sources that are actual links. It is these sources that are returned as

possible answers when the appropriate query is executed. Each structure

can be assigned a limited amount of memory, or number of allowed

references, ensuring that it stays lightweight. When this allocation is

reached, to add a new reference it must first remove an existing one.

Source references are stored with weight values that can be either

incremented or decremented. The weight values determine in which level

the source references are stored. The weight values must reach a certain

threshold value before they can be moved up a level. For example, for the

simplest case, say we have a weight increment value of 0.1 and a threshold

for the next level of 0.5. If a particular source is associated with the

current source 6 times in a row, then its weight reaches the value 0.6,

which is greater than the threshold and so its reference can be moved up to

the next level. If the same query type is run again however and the source

is not used, then its value can be decremented, when it will subsequently

be moved down a level if it then falls below the threshold. Additional

features are also possible. For example, sources can borrow memory from

each other. This means that the total amount of memory stays the same but

it is better distributed. More heavily used sources can be allocated a larger

amount of memory and thus can more effectively optimise. Learning



algorithms might also be included to try and autonomously learn certain

parameters, such as the best weight increment or decrement values.

Appendix B outlines the main linking procedures that have been

implemented.

2.2 Linking Structure

The linking structure itself is meant to record related sources for similar

queries. However, it is not a caching mechanism where it stores the whole

query with the sources used. It is slightly more lightweight and flexible,

where it matches parts of new queries to the structure. The structure can

allow for any level of nesting that may be suitable to the current problem.

For example, say we have a Premier-league team being linked to Sunday-

league teams. If different queries have asked for comparisons related to

goals or fouls, then partial query paths like the ones shown in Figure 2 can

be stored. At the end of these paths there is a thresholds structure that

stores the linked sources at the different levels for the specified path.

Figure 2:

For a distributed

define a remote

what source is b

structure that

themselves and

Premier team

F

9

Example of paths relating to link

environment, the source path w

server, so that there will not be a

eing referenced. The linking stru

stores the addresses of node

can be used in at least two di

Goal

s
ouls

Sunday-league

Sunday-league
s

Goal

F

GT The Cock and Bull
s for partial queries.

ill also include a URL to

ny confusion as to exactly

cture is a reference-based

rather than the nodes

fferent ways. One way is

s
oul

s

LT Hatchets Utd



10

globally in the network itself. It can be used to link sources that typically

answer the same type of query. Then when one of the sources is queried, it

can return the sources it is linked to and these can be looked at instead of

needing to look at all potential sources. The links stored globally thus

optimise the whole network and can be shared between all users. The

other possible use is as a local view. A particular application may want to

store locally references to the nodes that it typically visits for the queries

that it typically answers. These may be a subset of the whole network. A

description of the nodes visited by a particular application can be stored

locally and monitored in the same way as the source links. Then when a

new query is executed, the local view can be searched first and if it

contains any relevant information this can be used instead of having to

search the whole network. This report will present results of tests

evaluating the performance of both the global source linking and local

view. Appendix A outlines the main query engine procedure, while the

linking structure and methodology are described next.

2.3 Reasoning over the Information

It will also be shown that it is possible to use the links to provide some

level of reasoning over the stored information. Queries could be generated

to answer questions such as:

 what is the best value based on other values?

 does a value exist based on other values?

If the user is asking if a certain solution exists, then the query engine can

simply check that an answer is possible. If the user is asking for the best



11

answer, then the query engine can average all possible solutions to

produce a final answer. In generating these answers, the linking

mechanism can be used to provide the knowledge required to reason over

the information. The links represent the knowledge of the users of the

system. They show what pieces of information the users requested and

grouped together. Thus it should be possible to use the links in more

knowledge-intensive queries. For example, a user might ask how to get to

the next game in the Winter season against a London club. The query

might look like:

Select Best Transport.Type From Transport, All_Teams Where

(Transport.Destination Equals All_Teams.Team_Location) And

(All_Teams.Team_Location Includes ‘London’) And

(All_Teams.Game_Season Equals ‘Winter’)

Thus through simple mathematical operators such as ‘average’, a basic

distributed reasoning engine can be generated. This has been written about

previously in Greer et al. [2007b].

3 Related Work

Mano et al. [2006] discuss the main mechanisms used in this report for

linking (stigmergy, self-organisation, reinforcement). While this report has

described the process as being stigmergic, others might argue that it is

more like the Hebbian learning rule, which states that concepts that are

activated simultaneously become more strongly associated. This method

has been used by Heylighen and Bollen [2002], although their method of

clustering seems to require manual user interaction rather than an



12

automatic query process that compares specific values. Stigmergy has

been used widely to self-organise in MANETs. These networks are highly

dynamic and need a flexible and robust mechanism that can adapt and

allow them to self-organise. As these systems can be on a massive scale,

some centralised controlling mechanism may not be practical. Babaoglu et

al. [2006] and Breukner and Parunak [2004] are papers that discuss this

problem. This self-organisation may not lead directly from the querying

process but would involve information sharing, though Babaoglu et al.

[2006] discusses organising through queries that contain sets of keywords.

The architecture of Sartiani et al. [2004] is close to the network

architecture suggested in this report. Although, wherever possible, they do

clustering based on schema similarity, they note that it is also possible for

peers with unrelated schemas to be clustered together. Their super-peers

also allow for a hierarchical structure. However, the organisation is

slightly different as the super-peers do all of the autonomic clustering. The

source clustering tested in this report is not hierarchical, but there is no

reason that container nodes could not also cluster using the links. Dragan

et al. [2005] is also relevant, as the dynamic linking of sources will also in

effect reroute queries. Another example can be found in Vidal et al. [2004]

or Raschid et al. [2006]. They apply linking to the problem of optimising

routes through web resources in the area of Life Sciences. In this set of

resources, there are known to be different routes to different resources that

may answer the same query.

An example of linking based purely on the query experiences includes

Koloniari et al. [2005]. They try to cluster nodes in a peer-to-peer network

based on query workloads. They measure how similar a node’s content is

to a type of query, which will mean that it is more likely to return an

answer to that type of query. They then try to cluster nodes with similar



13

workloads together in workload-aware overlay networks. They describe

that the mechanism for calculating the workload value is still an open

issue and could be based on a node storing statistics on the queries that

pass through it. Michlmayr et al. [2006] is also along the lines of Kolonari

et al., where they stigmergically create links between nodes based on

query requests. The requests consist of sets of keywords and they try to

cluster documents in repositories and optimise routes based on the

requests. Another system that tries to associates nodes based on the query

experience is called NeuroGrid (Joseph [2002]). Robinson and Indulska

[2003] describe a service discovery protocol called ‘Superstring’.

Superstring is used to discover services in an extremely dynamic

environment but with a stable central core of nodes. This is exactly the

environment that we envision for our system. The lightweight framework

allows for a dynamic MANET environment, for example, but the stable

central core allows for stigmergic principles to work. They also build up a

partial hierarchy based on the semantics of the concepts being searched.

These examples however may be more along the lines of a search engine

than the evaluation queries tested in this report.

4 Test Environment

A test environment has been written in the Java programming language to

test the querying process of the information network. The data used to

evaluate the tests is generated in a random manner. This includes the

network configurations and the queries to be executed. With specified

configurations, networks can be randomly generated that are hierarchically

structured, as shown in Figure 1. The queries are also generated in a

random manner. The tests however require some control over the



14

similarity of the queries to be executed, to determine how well the linking

will do. Distribution bands thus need to be specified for the source and

value types. For example, if we have 10 different source types, it is

possible to specify that one of three source types should be selected 70%

of the time and one of the remaining 7 source types 30% of the time.

When a query is randomly constructed, this will skew the specification

towards particular query types. The linking specification also needs to be

entered, such as threshold values, increment and decrement weight values,

or the number of allowed entries in the linking structure. The user also

specifies a linking method. This can indicate the type of search process

(for example, full search with links), whether to include the comparison

operator or single reserve entry in the linking structure, or whether to

allow borrowing of memory or learning. The user can also indicate

whether to construct and use a view as part of the search process. Note

that a separate linking specification can be entered for the view if desired.

4.1 Test Objectives

With parameters specified it is possible to randomly generate a number of

queries and execute them on the network. Each query is evaluated on the

network and the statistics that are generated, such as node count or level of

accuracy, are stored. When all queries have been executed the statistics

can be retrieved and analysed. The objectives of this testing are as follows:

 To show that in certain situations, stigmergic linking can be

effectively used as part of a query self-optimisation process.

 To estimate at what kind of configuration, with regard to query or

network variation, might allow effective linking.



15

 To indicate any definite conclusions that can be made from this

initial set of tests, with regard to link structure, size and

performance.

4.2 Testing Methodology

Appendices A and B outline the main algorithms used in the test

procedures. These are essentially the query process and linking

mechanism. Results from similar linking methods seem scarce, so these

tests have compared node count and quality of answer between searches

that use links and searches that do not (called a full search). Note that the

full search is still guided by the hierarchical structure and storage of

previous query evaluations as described in Appendix A. The only

difference is that it will not try to retrieve linked sources. The search

strategy was as follows: Two different searches were performed for each

query. The first was a full search only and the second was a linked search

as described in Appendix A. The node count and quality of answer from

these two searches could then be compared. However, if the linked search

did not return an answer and the full search did then the full search node

count would need to be added to the linked search node count as part of

the linked search. It was assumed that a full search would then be

performed to try and return an answer.

The performance of the linking was measured as the amount of reduction

in node count and also as the quality of answer returned. The percentage

of reduction in number of nodes visited could be measured by comparing a

node count from a full search only with a node count from a linked search.

The queries requested values from sources that were of the integer type.

The evaluation function then tried to maximise the sum total for all source



16

values requested to produce the best quality of answer. As the network is

service oriented, the term Quality of Service (QoS) is used to mean the

same as quality of answer. The full search has access to all source

instances and so should return the best answer. For a linked search, the

number of sources looked at would be reduced and so you would expect

this maximum value also to be reduced. However, if the correct links have

been established, then a good answer should still be returned. This

percentage of reduction was taken to be the reduction in quality of service.

When measuring QoS reduction, only queries answered through a linked

search were included. If a linked search required a further full search to

find an answer, then the answer value would not be included in the

statistics. The values were all of type integer, but this is equally suitable

for text or concept matching as for numerical comparisons. For example,

10 different integer values can be compared in the same way as 10

different textual words. Then the equivalence matching can apply equally

for numbers or for text.

5 Test Cases

Following are the results of tests that give an indication of how effective

the linking is likely to be. The tests revealed that changes in configuration

parameters could affect the performance and so it is not possible to give a

definitive evaluation. The tests also suggested that configuration would

require tuning if trying to achieve optimal performance, as linking

parameters, such as memory allocation, increment/decrement weight

values or threshold values need to be specified or learned. Each value

measured was averaged over at least three test runs. The testing focused

mainly on the type of query being executed and conclusions will be given



17

at the end of the tests sections. The network configuration was not tested

as much. For the linking, the most critical factor is the variety in the query

and so this was the main evaluation consideration.

5.1 Test1: Tests with Queries skewed by a 70:30 Distribution

One set of tests was for queries that were skewed with a 70:30

distribution. The linked search either included the extra single entry in a

reserve position (reserve entry), or alternatively a view. The reserve entry

was a single additional entry for each branch of the linking structure and

could be considered as a sort of benchmark that other setups without it

should try to achieve. The number of queries executed ranged from 5000

to 50000 queries. This set of tests performed two evaluations.

 It compared the reserve entry to a view.

 It considered linking effectiveness with respect to text or concept

matching in particular.

The network configuration for these tests was as follows:

 There were a total of 300 sources in a network with 315 nodes.

 There were 10 different source types and 5 different value types.

 There were a total of 30 instances of each source type, where each

source instance contained all 5 value types.

 Each value type could have a range of integer values from 1 to 10.

 The distribution for the queries was 0.7:0.3. So for the sources,

70% of the time a source would be selected from one of 3 source

types and 30% of the time from one of the remaining 7 source

types. For the values, 70% of the time a value would be selected



18

from one of 2 value types and 30% of the time from one of the

remaining 3 value types.

 For the linking methods, each link level (possible, monitor and link

tables) was allowed a total of 50 entries for each source. The

monitor level threshold was 0.1 and the link level threshold was

0.4. The increment value was 0.1, while the decrement value was

0.05 times the increment.

 The view size allowed 100 entries for each of the three link levels.

 Each query was made up of a maximum of 2 sources in the

‘Select’ clause and 3 sources in the ‘From’ clause. If the ‘Select’

clause had 2 sources, the ‘From’ clause had 2 or 3 sources.

 The queries contained ‘Where’ clause comparisons with only the

equivalence operator. For example A ‘EQ’ B. No other operators

(GT, GE, LT etc) were used.

 The reduction in number of nodes searched and reduction in QoS

were measured.

Graph 1 and Graph 2 are an example of the results that can be achieved.

One of the trends in the graph is for a set of tests where the reserve

position was included (reserve) and the other is for a set of tests where the

reserve position was omitted but a view was allowed (view). While the

reserve entry seems to produce a much better QoS, the view produces a

better reduction in node count. The view can limit the number of nodes

used as part of the first source retrieval, thus reducing the search

afterwards as well.



19

Graph 1: Skewed Query Test (70:30). Percentage of reduction in the number of nodes
searched for queries with the equivalence operator only. Link structures with either a reserve entry
or a view are included.

Graph 2: Skewed Query Test (70:30). Percentage of reduction in quality of service for
queries with the equivalence operator only. Link structures with either a reserve entry or a view are
included.

5.2 Test2: Tests with Queries skewed by a 90:10 Distribution

This set of tests tried to determine if more skewed queries could

effectively link sources that answered queries with all types of comparison

operator. If this is possible then numerical data can also be linked. But

because this increases the complexity of the query, the source and value

types may need to be skewed more to compensate for this. The reserve

entry was not included in these tests but a view was allowed. The network

configuration and linking structure was the same as for the previous tests

with the 70:30 skewing (section 5.1). This set of tests:

30

50

70

90

5000 10000 20000 30000 40000 50000

%
S

e
a
rc

h
B

e
tt

e
r

Number of Queries

reserve view

0

5

10

15

20

25

5000 10000 20000 30000 40000 50000

%
Q

o
S

W
o

rs
e

Number of Queries

reserve view



20

 Compared queries with equivalence only comparisons to those

with all comparison types.

 Also considered memory borrowing as part of the linking process.

To show the importance of the configuration values, tests were also run

with a maximum of 100 entries at the possible links level for each source

and 200 allowed link entries in the view. These results were averaged over

6 test runs each. Graphs 3, 4 and 5 give the results of these tests.

Graph 3: Skewed Query Test (90:10). Percentage of reduction in the number of nodes
searched for queries with the equivalence operator only (eo) or all comparison operators (ac). Link
structures with a view that do (v_bor) or do not (v) borrow memory are included. Number of entries
at the possible links level either 50 or 100.

Graph 4: Skewed Query Test (90:10). Percentage of reduction in quality of service for
queries with the equivalence operator only (eo) or all comparison operators (ac). Link structures
with a view that do (v_bor) or do not (v) borrow memory are included. Number of entries at the
possible links level either 50 or 100.

80

85

90

95

5000 10000 20000 30000 40000 50000

%
S

e
a

rc
h

B
e

tt
e

r

Number of Queries

v_50 (eo) v_50 (ac) v_bor_50 (eo)
v_bor_50 (ac) v_100 (eo) v_100 (ac)

0

5

10

5000 10000 20000 30000 40000 50000%
Q

o
S

W
o

rs
e

Number of Queries

v_50 (eo) v_50 (ac) v_bor_50 (eo)

v_bor_50 (ac) v_100 (eo) v_100 (ac)



21

When considering search reduction, it can be seen that increasing the

number of allowed entries at the possible links level has had an affect on

the performance. There appear to be optimal levels that then reduce as

more queries are executed. For the equivalence only queries, these graphs

suggest that increasing the number of updates after 10000 queries or so

might actually have a detrimental effect on the effectiveness of the linking

and for the all comparison queries, it is after 20000 – 30000 queries. The

QoS stays roughly the same, but the search reduction starts to decrease.

The reason must be that extra links are being added that are not then

helping with the search process. However, if there are only 50 allowed

entries at the possible links level then there is not the same reduction in

performance. Graph 5 shows the average number of link references stored

for all sources, but does not give any indication of the distribution over

each source. This number of links can be compared with the percentage of

search reduction shown in Graph 3.

Graph 5: Skewed Query Test (90:10). Average number of source links stored for
queries with the equivalence operator only (eo) or all comparison operators (ac). Link structures

with a view that do (v_bor) or do not (view) borrow memory are included.

0
5

10
15
20
25
30

5000 10000 20000 30000 40000 50000

A
ve

ra
g
e

lin
k
s

p
e
r

s
o
u
rc

e

Number of Queries

v_50 (eo) v_50 (ac) v_bor_50 (eo)

v_bor_50 (ac) v_100 (eo) v_100 (ac)



22

As might be expected, this comparison shows that increasing the number

of stored links improves performance, but only up to a point. Graph 5

shows that the link numbers do not reach the maximum of 50 on average

that is allowed; but this measurement does not consider individual sources,

when more important sources might be expected to store more links. A

result at the end of section 5.5 indicates that only allowing a maximum of

25 links also produces good results and so Graph 5 is not too deceiving.

There appears to be an upper limit on the amount of memory that should

be used, or even possible performance that this particular linking

mechanism can provide. The extra entries at the possible links level must

have allowed more variety in the references that make the link level, or

alternatively, having fewer allowed entries at the possible links level has

concentrated the variety at the link level.

5.3 Test3: Increase the Network Variability

Other tests tried to test how increasing the network variability might affect

the performance. This was done in two different ways. The first was to

increase the query range by having more source types or value ranges. The

other test increased the number of instances of each source type. The

results showed that increasing the source type and value ranges from 5

types and a range of 1 to 20, to 20 types and a range of 1 to 20, showed

that performance remained relatively stable. Increasing the number of

source instances to 90 also showed the performance remaining relatively

stable.



23

5.4 Reasoning Tests

This set of tests evaluated the potential of the linking mechanism to

provide some level of reasoning over the information stored in the

network. To test this, queries that asked the ‘best’ or ‘exists’ queries were

generated. It proved relatively easy to do this. The query generator would

place the keyword ‘best’ or ‘exists’ in front a standard information

retrieval query. For example:

Select Best A.val1 From A, B Where (A.Val2 LT B.Val3)

The keyword would then tell the query engine to average all of the

possible answers to give the best total. Thus all possible solutions would

be retrieved and then their values averaged to provide the final answer.

For the ‘exists’ queries, the engine would check that any answer existed.

Tests for this used the test 1 setup but varied the skew from 70:30 – 80:20

– 90:10. Graph 6 shows the results of this.

Graph 6: Reasoning test. Percentage range of average answers for a linked search
compared to a full search for varying query skewing. Equivalence only (eo) or all comparison (ac)

queries tested.

0.0

10.0

20.0

30.0

40.0

70-30 80-20 90-10%
A

n
s
w

e
r

D
if
fe

re
n
c
e

Query Skewing

less (eo) more (eo) less (ac) more (ac)



24

The results provide an interesting conclusion. The average answers range

from values larger than the best answer for a single solution, to values less

than that. For the ‘best’ queries, results showed that the QoS ranged from

maybe 10-30% better to around 5-10% worse. The QoS metric tries to

maximise the answer total and so larger totals would be preferred. This

suggests that the linking ‘intelligently’ prunes the lower total answers

from the search, which the full search would also return. Thus the linked

search provides a better QoS as well as node count, depending on your

measurement. The assumption here is that the evaluation function

considers larger totals as being better. The links are created based on this

metric and all queries evaluated using it. Thus if the reasoning queries

return larger totals then this is considered as being better. If some other

metric is used for the reasoning queries, for example the user wants purely

the average of all possible solutions without any sort of skewing, then this

metric would not be helpful. There also does not appear to be a direct

correlation between the number of answers returned with larger values and

the overall percentage value. The number could vary by quite a large

amount, with the percentage value varying by much less.

5.5 Conclusions to the Tests

It is useful to make some initial numerical calculations, to try and

determine the relative size of the linking structure compared to possible

query variations that could be used. These calculations can be done for the

test configuration specified in test1. As there are 10 source types and 5

value types in total, this gives 50 possible combinations. For a completely

random query, each source/value combination thus has a 2% chance of

being selected. When the queries are skewed, they can either be skewed by



25

70:30 or 90:10, where the source split is 3:7 and the value split is 2:3.

Table 1 gives the probability that an individual source or value will be

selected for a part of the query based on Equation 1. These combinations

lead to 4 different bands to which a source/value combination might

belong. Table 2 indicates the relative frequency by which a combination

from one of the 4 different bands will be selected. The frequency is

calculated by Equation 2 and Equation 3:

Equation 1: probability of being selected = probability for band / number
in band.
Equation 2: probability a source/value combination will be selected =
(probability source band selected * number in band) * (probability value
band selected * number in band) / (number of sources in band * number of
values in band).
Equation 3: frequency = probability for the band / probability for the
lowest valued band.

The percentage of all possible links that a source or view can store can

also be calculated. As there are 30 instances of each source type, assuming

a ‘value-source’ path for a view entry, a view can store 10 * 30 * 5 = 1500

link combinations. Assuming a ‘value1-source-value2-comparison-

source_instance’ path for a source entry - if a query allows equivalence

only queries, then the total number of possible links is 299*5*5 = 7,475

link combinations. If all comparison operators are allowed, this increases

to 299*5*5*6 = 44,850 link combinations. From this we can tell that 200

entries in the view means 13.3% of all possibilities can be stored as actual

links. For the sources – for equivalence only queries, each source can store

50 references, or 0.7% of all possibilities, while for queries with all

comparison operators, this reduces to 0.1%. The actual number stored in

the top level as links rose to around 25, which is 0.33% or 0.06%



26

respectively. These numbers indicate that the linking can be quite

effective.

70:30 90:10

Source Value Source Value

Band1:0.7 Band2:0.3 Band1:0.7 Band2:0.3 Band1:0.9 Band2:0.1 Band1:0.9 Band2:0.1

P N P N P N P N P N P N P N P N

0.233 3 0.04 7 0.35 2 0.1 3 0.3 3 0.014 7 0.45 2 0.033 3

Table 1: Table showing the probability (P) that a source or value will be
selected depending on the band it is in and the probability skew. Also

indicated is the number of source or value types (N) to which this
probability relates.

70:30 90:10

Value Value

Band1:0.7 Band2:0.3 Band1:0.9 Band2:0.1

Source F N F N Source F N F N

Band1:0.7 20.25 6 5.75 9 Band1:0.9 293 6 19 9

Band2:0.3 3.5 14 1 21 Band2:0.1 15 14 1 21

Table 2: Table showing the frequency (F) that a source/value combination
will be selected from one of the 4 bands by, based on the number in each

band and the skew probability. Also indicated is the number of all
source/value combinations (N) to which this frequency relates.

For the 90:10 split, Table 2 indicates that a combination from the highest

valued band will be selected with a frequency of 293. Although the tests

show that the variation is much greater than this, if we reduce the queries

to just this upper band we get 29 * 3 * 2 = 174 (source instances number *

source types * value types) possibilities for the equivalence only queries,

or 29 * 3 * 2 * 6 = 1044 (include different comparison operators)

possibilities for the all comparison queries. Test2 thus suggests that the



27

average number stored as links in each source is just under 15% (25 / 174)

of all possibilities for the worst case. For these tests the view is used only

to retrieve links for the first source evaluated. Thus, a comparison with the

source links only here looks reasonable. This suggests that the linking is

an effective optimisation technique, providing an appreciably greater than

1:1 relation with memory allocation. If around 15% of all possible

combinations are stored as links, a much greater than 15% improvement in

performance would be expected. Measurements here show 80-90% search

reduction, for example. This does not mean however that adding more link

entries will automatically improve performance by the same amount. As

well as the upper limit that has been suggested there is also not a direct

correlation. For example, the test 1 configuration with the same view but

only 25 entries at the link level reduced search performance by only

around 2-3%. The conclusion is simply that if you store a certain

percentage of the possibilities as links you would expect to get a much

better improvement than that in performance.

5.5.1 Summary of Test results

This section will summarise the test results and make some comparisons

to other peoples’ tests in related areas. As this type of query mechanism

has not been evaluated before, the comparisons cannot be direct

comparisons, but only indicate the sort of performance numbers that can

be involved.



28

5.5.1.1 Summary of Test 1 Results - Skewed Query Test

(70:30)

The test1 set of tests was for queries that considered the equivalence

operator only and show a significant reduction in node count with a

reasonable QoS. This would be useful for text or concept matching, for

example. The reserve entry provides a good QoS, but the view provides a

better search reduction. If both are combined however, rather than

benefiting from both, it acts more like a view. The initial filtering from the

view seems to have reduced the QoS unless the queries are sufficiently

skewed. One other test tried this configuration without a reserve or view.

This then performed more like the reserve option, with a search reduction

of around 76% and QoS reduction of around 6% (compared to under 5%

with a reserve) for the test 1 configuration.

5.5.1.2 Summary of Test 2 Results - Skewed Query Test

(90:10)

When considering search reduction, the test2 tests seem to show a

significant conclusion. If the equivalence only queries can achieve a

certain level of accuracy after 20000 queries, then adding more links after

this might only increase the search without further helping to find a better

answer. But this is strongly dependent on the configuration. So the system

might need to monitor this and determine an upper bound on the memory

allocation. This would also be a limiting factor on the possible

effectiveness provided by the links. This monitoring could be done as part

of the supervision system inherent in autonomic systems. This would be

an interesting area for more monitoring, to determine when to stop adding



29

new links and has been written about in Greer et al. [2007a]. A drop in

performance when new links are added could indicate an upper bound on

the memory allocation. Graph 4, showing the QoS, indicates a very good

quality for the equivalence only queries and reasonably good for queries

with all comparison operators. A generally prevailing rule through all tests

would be that a larger search would produce a better quality of service.

However, as shown by the reserve results for test1, when the links being

added are key, both factors can be improved. Graph 5 shows that the link

numbers levels out at around 25 for all sources, although it is still

increasing slowly. This is an average value however and does not consider

the exact distribution over the skewed sources. Statistics also show that the

proportion of references to queries for the more popular source or value

types increases with increasing query numbers. Thus if these types are

queried more and have more links, then this would increase the search

size. This is an estimate for the whole source or value type and not

individual instances. The link numbers also suggest that even with high

skewing the large numbers of queries are sufficiently random to allow a

large amount of variation. It might also suggest that the current parameters

make incrementing links much easier than decrementing them, so that

sources reach the link level relatively easily. The test2 results show that

borrowing memory gives a clear improvement in QoS for the all

comparison queries. This should be because of the more flexible memory

distribution.



30

5.5.1.3 Summary of Test 3 Results – Query Range and

Network Variability

Test3 tests show reasonably good consistency over increasing the value

ranges, suggesting that some scaling up is possible there. However,

scaling up the number of source instances is not as convincing as was

anticipated. The linking performance seems to hold its own, but does not

really improve. The original supposition was that a larger ratio of source

instances to source types would be favourable, because the linking process

selecting specific source instances would then be more effective.

However, this does not seem to be the case. Having more instances with

the same range of values means that there is more chance that a full search

will find a source with the optimum set of random values for each query

part. Thus the linking has to be more accurate in this case to provide the

same level of QoS. Also, the process used to answer the queries could

have a normalising effect on the number of nodes visited as it limits the

number from one query part to the next.

5.5.1.4 Summary of Test 4 Results - Reasoning

The initial reasoning tests in test 4 show that using links is beneficial. The

links can ‘intelligently’ prune the worse solutions from the search space

while still leaving an answer. Thus a better average value will be

calculated and so both search reduction and QoS will be improved.

5.5.1.5 Related Test Results and Other Conclusions

There appears to be little directly related test results available. Koloniari et

al. [2005] indicate that their tests showed that 60% more queries could be



31

answered in the same amount of time when nodes were clustered using

their algorithm. These tests have not quite reached 60% but QoS is also

indicated. Michlmayr et al. [2006a] state that in the space of 2000 to

10000 queries, the number of links travelled to find an answer reduces

from 60.44 to 53.02 (12% reduction) and the number of documents

retrieved increases from 1.82 to 3.95 (over twice as many). In Michlmayr

et al. [2006b] they provide a different set of results for a search using

taxonomies. They formulate queries consisting of single keywords taken

from a taxonomy. A number of source documents are created, where each

peer is an expert in a particular topic based on a percentage value. For

example, a Pexpert value of 60% means that 60% of the peer’s documents

relate to the concept that it is expert in and 40% are random. The hit rate

for the number of relevant documents retrieved for a particular time

interval is then measured. They note that their most significant result is an

improvement of 39.5% for a Pexpert value of 60%, while for a Pexpert value

of 80%, the improvement is 38.2%. These values might be compared to

the query distributions with search reduction, as this also measures

improvement over variety.

6 Conclusions and Discussion

The aim of this work has been to evaluate a mechanism to allow an

information network to optimise itself dynamically. One objective is that

the network structure should remain lightweight and so the organising

mechanism should also be lightweight. To this end stigmergic links have

been used. A weight value and reference between two nodes is very

lightweight and the total amount of memory can also be controlled. It

should also be flexible as we do not know exactly what information will



32

be stored. Thus the results of previous queries can be used to optimise the

network, as this is completely dynamic, reflecting the system use. It does

however require a certain amount of consistency with respect to the type

of query that is executed for it to be effective. The intention of the tests in

section 5 is to show that stigmergic linking can fulfil the optimisation

requirements. The links represent the knowledge held in the network and

so together with some form of semantic organisation, could largely replace

a centralised ontology to describe the knowledge in the network. The exact

type of query being executed or the exact network structure is not so

important. This sort of query, linking sources through comparisons, may

be unusual in an XML-based information network, but the intention is to

produce a richer or more complex type of query. The linking mechanism

is generic, but the test results are tied into the query procedure that is used.

Hyperlinks that link related Web pages might be a similar sort of

application, or comparing values suggests some sort of record-based

system. For example, Cameron et al. [2004] suggest a linking mechanism

for database records, such as those in health care, retrieved from Web

services. Another area could be the Semantic Web [Berners-Lee et al.,

2001], when queries will retrieve information from several related web

pages rather than from a single Web page.

Stigmergic linking can clearly be used as part of a self-optimisation

process and introduce new knowledge into the network. Query variation

rather than network configuration has been tested, as either should

determine the linking effectiveness. Querying a network with more variety

in its node types should lead to the same query variation. The tests suggest

that retrieving links can produce a worse performance when there are

either too many or too few links, and so the optimal configuration is

important. With a certain level of confidence however, it can be stated that



33

provided a good configuration is found, the linking should improve

performance by something appreciably larger than a 1:1 relation with

memory allocation. Some other results in similar areas have been found,

but it is difficult to make direct comparisons, due to the differences in the

type of query that is executed. While these test results seem new, the

indexing and retrieval mechanism of query parts might be the most novel

aspect of this work, providing the desired lightweight and flexible

framework.

Tests have also shown that the links can be used to reason over the

network’s information. They represent the use of the system and thus also

the knowledge of the users of the system. Thus they can be used in more

knowledge-intensive queries. Through simple aggregation, higher levels

of reasoning can be obtained.

Acknowledgments

Work supported by the project CASCADAS (IST-027807) funded by the

FET Program of the European Commission.

7 References

Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G., Ducatelle, Gambardella, F.,

Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A. and Urnes, T. Design Patterns

from Biology for Distributed Computing, ACM Transactions on Autonomous and

Adaptive Systems, 1 (1) (2006) 26 – 66.

Baumgarten, M., Bicocchi, N., Curran, K., Mamei, M., Mulvenna, M.D., Nugent, C.,

Zambonelli, F. 2006. Towards Self-Organizing Knowledge Networks for Smart World

Infrastructures, Invited Session on Service Development and Provisioning through



34

Situated and Autonomic Communications at International Conference on Self-

Organization and Autonomous Systems in Computing and Communications

(SOAS’2006), Erfurt, Germany, (2006) pp. 18 - 21.

Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic Web: A new form of Web

content that is meaningful to computers will unleash a revolution of new possibilities,

Scientific American, May (2001).

Breukner, S. and Van Dyke Parunak, H. Self-Organising MANET Management, G. Di

Marzo Serugendo et al. (Eds.): AAMAS 2003 Ws ESOA, Lecture Notes in Artificial I

ntelligence (LNAI) 2977, 2004, pp. 20 – 35.

Cameron, M. A., Taylor, K. L. and Baxter, R. Web-Service Composition and Record

Linking VLDB Workshop on Information Integration on the Web (IIWeb-2004) Toronto,

Canada, 2004.

Dorigo, M., Bonabeau, E., and Theraulaz, G. Ant algorithms and stigmergy, Future

Generation Computer Systems, 16 (2000) 851 – 871.

Dragan, F., Gardarin, G. and Yeh, L. MediaPeer: a safe, scalable P2P architecture for

XML query processing, Database and Expert Systems Applications, Proceedings.

Sixteenth International Workshop on, 22-26 Aug. 2005, pp. 368- 373.

Fu, L. Knowledge Discovery based on Neural Networks, Communications of the ACM,

42 (11) (1999) 47 - 50.

Grassé P.P. La reconstruction dun id et les coordinations internidividuelles chez

Bellicositermes natalensis et Cubitermes sp., La théorie de la stigmergie: essais

d’interprétation du comportment des termites constructeurs, Insectes Sociaux, 6 (1959)

41-84.

Greer, K., Baumgarten, M., Mulvenna, M., Curran, K., and Nugent, C. Autonomic

Supervision of Stigmergic Self-Organisation for Distributed Information Retrieval,

Workshop on Technologies for Situated and Autonomic Communications (SAC), at 2nd

International Conference on Bio-Inspired Models of Network, Information, and

Computing Systems, BIONETICS 2007, December 10-13, Budapest, Hungary, (2007a).

Greer, K., Baumgarten, M., Mulvenna, M., Nugent, C and Curran, K.. Knowledge-Based

Reasoning through Stigmergic Linking, International Workshop on Self-Organising

Systems IWSOS’07, 11 -13 September, Lecture Notes in Computer Science (LNCS),

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(dragan%20%20f.%3cIN%3eau)&valnm=Dragan%2C+F.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20gardarin%20%20g.%3cIN%3eau)&valnm=+Gardarin%2C+G.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20yeh%20%20l.%3cIN%3eau)&valnm=+Yeh%2C+L.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10080
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10080


35

Eds. David Hutchison and Randy H. Katz, Vol. 4725, 2007b, pp. 240 – 254, Springer-

Verlag.

Heylighen, F. and Bollen, J. Hebbian Algorithms for a Digital Library Recommendation

System, Proceedings of the International Conference on Parallel Processing Workshops

(ICPPW’02), 2002, pp. 439-.

Joseph S. NeuroGrid: Semantically Routing Queries in Peer-to-Peer Networks. In

Proceedings of the International Workshop on Peer-to-Peer Computing (co-located with

Networking 2002), Pisa, Italy, May 2002.

Koloniari, G., Petrakis, Y., Pitoura, E., and Tsotsos, T. Query workload-aware overlay

construction using histograms, Proceedings of the 14th ACM International Conference on

Information and Knowledge Management, 2005, pp. 640 – 647.

Mano, J-P., Bourjot, C., Lopardo, G. and Glize, P. Bio-inspired Mechanisms for Artificial

Self-organised Systems, Informatica, Vol. 30, 2006, pp. 55 - 62.

Michlmayr, E., Pany, A., and Graf, S. Applying Ant-based Multi-Agent Systems to

Query Routing in Distributed Environments, in Proceedings of the 3rd IEEE Conference

On Intelligent Systems (IEEE IS06), September 2006a.

Michlmayr, E., Pany, A., Kappel, G. Using Taxonomies for Content-based Routing with

Ants, 2nd Workshop on Innovations in Web Infrastructure (IWI2006), Co-located with

the 15th International World-Wide Web Conference, May 2006b, Edinburgh.

Mulvenna, M.D., Zambonelli, F., Curran, K., Nugent C.D. Knowledge Networks, In: I.

Stavrakakis and M. Smirnov (Eds.), Autonomic Communication, Springer-Verlag,

Lecture Notes in Computing Science, LNCS 3835, 2006, pp. 99-114. ISBN 3-540-32992-

7.

Raschid, L., Wu, Y., Lee, W., Vidal, M., Tsaparas, P., Srinivasan, P., and Kumar Sehgal

A. Ranking Target Objects of Navigational Queries, 8th ACM International Workshop on

Web Information and Data Management WIDM ’06, 2006, pp. 27 – 34.

Robinson, R. and Indulska, J. Superstring: a scalable service discovery protocol for the

wide-area pervasive environment, Networks, 2003. ICON2003. The 11th IEEE

International Conference on, 2003, pp. 699- 704, ISSN: 1531-2216, ISBN: 0-7803-7788-

5.



36

Sartiani, C., Manghi, P., Ghelli, G. and Conforti, G. XPeer: A Self-organising XML p2p

Database System, http://www.di.unipi.it/~ghelli/papers/SarManGhe04-p2pdb.pdf, 2004.

Vidal, M., Raschid, L. and Mestre, J. Challenges in Selecting Paths for Navigational

Queries: Trade-off of Benefit of Path versus Cost of Plan, Seventh International

Workshop on the Web and Databases (WebDB 2004), 2004, pp. 61 – 66.

8 Appendix A – Query Engine Procedure

This appendix outlines the main procedure used to query the network. This

procedure assumes that links are included in the querying process.

Individual sources are retrieved and stored through comparisons with

other sources through the ‘Where’ clause statements. Consider the

following query:

Select A.value1, B.value2 From A, B, C where A.value3 GT B.value1

AND B.value2 LT C.value2

Query Process

To evaluate this we retrieve each ‘Where’ clause in reverse order and

evaluate to store sources that can be used for the next stage. Thus the first

stage is:

Evaluate B.value2 LT C.value2

1. To evaluate this we first check if a previous evaluation has stored any

‘C’ sources. As this is the first evaluation this will not be the case. We

thus check if the view stores any ‘C’ sources relating to ‘value2’. If it

does these are retrieved and used. If it does not then a full search is

performed to retrieve all of the ‘C’ sources.



37

2. We then try to retrieve related ‘B’ sources. If any exist from a previous

evaluation then they are retrieved. As this is the first evaluation they do

not and so the ‘C’ sources are asked to return any links to ‘B’ sources

relating to the ‘value2-B-value2-LT’ path. If these links do not exist

then a full search is performed to retrieve all of the ‘B’ sources.

3. Having retrieved the ‘B’ and ‘C’ sources they are evaluated to

determine the combinations that satisfy the comparison. These

combinations are then stored in structures to indicate this and also

indicate the only sources of this type that can be used in the rest of the

query process.

Evaluate A.value3 GT B.value1

1. To evaluate this, the ‘B’ sources that are stored are retrieved.

2. Any ‘A’ sources linked to them through the ‘value1-A-value3-GT’ path

are also retrieved. If none exist then a full search is performed to

retrieve all of the ‘A’ sources.

3. The ‘A’ and ‘B’ sources are compared to determine the combinations

that satisfy the comparison. This will produce the set of valid ‘A’

sources.

Calculate the Answer

1. The related ‘A’ and ‘B’ sources that provide the maximum combined

total for the required values are then returned as the result.

2. The source links can then be updated based on the finally selected

sources using the sources to update procedure.

Sources to update procedure



38

1. The query process has indicated a number of related sources used to

answer the query. They are essentially produced through the ‘Where’

clause comparisons.

2. Starting with the sources actually used to answer the query. The related

sources can be retrieved and links updated between related sources to

indicate their association.

3. The linking is actually done in a reverse order. For example, the B

source references are stored as links to the C sources and the A source

references are stored as links to the B sources.

4. If a view is used, then it is also updated with the related sources, but

maybe with a simpler path structure, for example, just source name and

value type.

5. The view is a global view for a whole network. It is a partial re-

construction of the whole network that stores nodes representing full

paths to each source type. The source type node then stores a linking

structure to reference actual source instances for particular value types.

9 Appendix B – Link Update Procedures

This appendix outlines the main procedures used to update the linking

structures as a result of the querying. The first procedure describes the

basic link update mechanism, while the others outline the additional

features that can be included.

Main link update procedure

1. Select next source nextSource.

2. Pass nextSource the path to a link structure and the sources to be linked

based on the last query.



39

3. NextSource retrieves the appropriate threshold structure for the

specified path.

3.1. Any sources already in the thresholds structure that are not part of

the query answer have their weight value decremented by the

decrement amount.

3.2. If these sources now fall below the allowed threshold for a level

then try to move them down a level.

3.2.1. If the lower level is full then try to move its sources down

first.

3.2.2. Repeat this until the bottom level has enough sources

removed to allow subsequent moves in the other levels to

allow the upper level sources to be moved down.

3.3. For any source specified as part of the answer, check if it already

exists in the structure.

3.4. If it already exists then increment its weight value by the

increment amount.

3.5. If the weight value now passes a threshold then try to move it up a

level.

3.5.1. Check if the upper level is full.

3.5.2. If the upper level stores its maximum allowed number of

entries:

3.5.2.1. Check if the current source still has a larger weight.

3.5.2.2. If this is the case then swap this source with the

lowest valued source in the upper level.

3.5.2.3. If this is not the case then if borrowing is allowed, try

to borrow memory using the borrow memory procedure.

3.5.2.4. If borrowing is not possible, the current source stays

at its current level.



40

3.5.3. If the upper level is not full then move the current source up

a level.

3.6. If the current source is new then try to add at the bottom level.

3.7. If the bottom level is full.

3.7.1. If borrowing is allowed, try to borrow memory using the

borrow memory procedure.

3.7.2. If borrowing is not possible, check the lowest valued

source’s weight. If this is less than the weight of the new

source then remove the referenced source and replace with

the new source.

3.7.3. If the lowest valued source still has a larger weight, then if

the reserve entry is allowed store the new source there. It can

then be subsequently incremented again until its weight

reaches a large enough value.

3.7.4. If the reserve entry is not allowed then the new source

cannot be stored.

3.8. If the bottom level is not full then add the new reference at the

bottom level.

4. If learning is allowed, adjust parameters based on a learning procedure,

for example see learning procedure.

Notes: the memory allocation is counted for each source and is a single

total for all link paths together. When determining the lowest valued

source to move down or remove, the current implementation considers all

threshold structures and not just the path currently being updated.

Borrow memory procedure



41

One of the linking options allows one source to borrow memory from

another. This means that the total amount of memory stays the same but

individual sources can store more or less entries depending on their use.

For these tests the borrowing has been restricted to sources referenced

only from the parent container – in effect only from sources of the same

type. This reduces complexity and also means that a search is not required

to find sources to borrow memory from. The procedure is essentially as

follows:

Current memory – the current amount of memory allowed at a particular

level.

Current entries– the current amount of memory used at a particular level.

Total borrowed – the total amount of memory borrowed at a particular

level.

Total lent – the total amount of memory lent at a particular level.

Equ 1 – number of slots that can be spared = current memory – current

entries – total borrowed.

Equ 2 – adjust allocated amount based on lent memory:

total lent += lent memory;

current memory -= lent amount.

Equ 3 – adjust allocated amount based on borrowed memory:

total borrowed += borrowed amount;

current memory += borrowed amount.

1. The source in question retrieves all related sources that it can borrow

memory from.



42

2. It asks each source in turn for a certain number of slots at a certain

level.

3. These sources reply with the number of slots that they can spare based

on equation 1.

4. The source in question selects a source or number of sources and

borrows memory from them.

5. The sources that lend the memory adjust their allocated amounts based

on equation 2.

6. The source that borrows memory adjusts its allocated amount based on

equation 3.

7. Any source that lends memory can demand it back if it runs short. The

source that it lends memory to must then release that specified amount

of memory and adjust its linking structure appropriately – removing

low level links if required.

Learning procedure

The learning procedure tested is very simple. It adjusts the weight

increment and/or decrement values based on the number of sources

incremented or decremented for the last link update. There are probably

many different algorithms that could be tried.


	Introduction
	2	Stigmergic Linking
	2.1	Linking Methodology
	2.2	Linking Structure
	2.3	Reasoning over the Information

	3	Related Work
	4	Test Environment
	4.1	Test Objectives
	4.2	Testing Methodology

	5	Test Cases
	5.1	Test1: Tests with Queries skewed by a 70:30 Distribution
	5.2	Test2: Tests with Queries skewed by a 90:10 Distribution
	5.3	Test3: Increase the Network Variability
	5.4	Reasoning Tests
	5.5	Conclusions to the Tests
	5.5.1	Summary of Test results


	6	Conclusions and Discussion
	Acknowledgments
	7	References
	8	Appendix A – Query Engine Procedure
	9	Appendix B – Link Update Procedures

